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Using the finite field transform and continued fractions, a simplified algorithm for
decoding Reed-Solomon codes is developed to correct erasures caused by other codes as
well as errors over the finite field GF(q™ ), where q is a prime and m is an integer. Such
an R-S decoder can be faster and simpler than a decoder that uses more conventional

methods.

l. Introduction

Fast real-valued transforms over the group (Z,)™ were used
first by Green (Ref. 1) to decode the (32, 6) Reed-Muller code
(Ref.2) used by the Jet Propulsion Laboratory (JPL) in
Mariner and Viking space probes. Gore (Ref.3) extended
Mandelbaum’s methods (Ref.4) for decoding R-S codes
(Ref. 5). He proposed to decode R-S codes with a finite field
transform over GF(2™), where m is an integer. Michelson
(Ref. 6) implemented Mandelbaum’s algorithm and showed
that the decoder, using the transform over GF (2™), requires
substantially fewer multiplications than the standard decoder
(Ref. 7). Recently, it was shown (Ref. 8) that R-S codes can
be decoded efficiently with a combination of the fast trans-
form method and continued fractions.

For a space communication link, it was shown in (Ref. 9)
that an R-S code that is concatenated with a Viterbi-decoded
convolutional code can be used to reduce the signal-to-noise
ratio required to meet a specified bit error rate. Such a
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concatenated R-S code is implemented presently on the Voy-
ager spacecraft.

In such a concatenated code, the inner convolutional de-
coder is sometimes able to find only two or more equally
probable R-S symbols. Then it is possible to declare an erasure
of the R-S symbol, i.e., mark the location of a possible error.
The outer R-S code can take advantage of the knowledge of
these erasure locations if erasures are reported to the R-S
decoder by the Viterbi decoder. Erasures are not reported by
the MCD as presently implemented in the DSN.

In this article, a simplified decoding algorithm is developed
to correct erasures and errors of R-S codes using both a finite
transform and continued fractions. This decoding algorithm is
based on the algorithm originally invented by Forney (Refs. 10
and 11). An important advantage of the present decoding
technique over previous methods is that a Chien-type search
(Refs. 7 and 11) for the roots of the error locator polynomial
is completely avoided.




ll. Onthe Decoding of Erasures and Errors

Let n be the block length of an R-S code in GF (g™). Also
let d be the minimum distance of the code where d = P~ 1.
Then n= P+ I, where P is the number of parity symbols and /
is the number of information symbols.

Define the following five different vectors:

(co,cl, .- "Cn—l) = ¢, code vector
(ro,rl, RN rn_l) =r, received vector
(”o’ U, un_l) = u, erasure vector
(ey-€,>" "> €,_,) =e,error vector

(L“io, Til, RN ﬁn_ 1) =1, new erasure vector

These vectors are related by i=e+tuandr=c+tu+te.

Suppose that ¢ errors and s erasures occur in the received
vector r and that s + 2¢ <d - 1. The syndromes are given by

n—1
— ok = ki
Sk—r(a )= Z ra
i=0

n-1 n-1 n-1 )
= E coki+ E uei+ E el.ak’ forl <k<d-1
H 1
i=0 i=0 i=0

but
n-1
Y cef=0 for1<k<d-I
=0

Thus

forl<k<d-1

(1a)

In general, let
t s
= k k 1
E =) YXF+3 Wzl  forallk  (Ib)
i=1 i=1

where Y; is the j-th error amplitude, X; is the j-th error
location, W, is the j-th erasure amplitude, Z;is the j-th known
erasure location, and £, =8, is known for 1 <k <d- 1.

Following Forney, let the erasure locator polynomial be
defined by

7(x) =I'! (x-Z) =Z; (- 17 x5 )
= 7=

This implies
al . .
2 CDnzii=0 fork=1,2,1s  (3)
j=0

where 7, = 1 and T].’s are known functions of Z,,Z,, -, Z
for 1 <j <s. The Forney syndrome (Ref. 10) is defined by

s

s
T,= Z G 78, for1 <i<d-1-s5 (4a)
=0

From Egs. (1) and (3), we know that 7, forj=1,2,- -, sand
S, fork=1,2,--+,d-1is known. Thus the T;’sfor 1 <i<
d - 1 - s are known. In general, let

s
T,=3, CWrE, . forali (4b)

j=0

where E,, . =S, ;for 1<i+s-;<d- 1 Then the

Forney syndrome T is known for I <i<d-1-s.

Now if one substitutes Eq. (1b) into Eq. (4b),

8
T,=3, CUrE,

j=0
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5
i+s—j i+s—j

]

k=1 j=0
s s
i —_1\/ §—
+ D, W ZE Y 1Yz
k=1 j=0

From Eq. (3) one observes
s . s Y
> W zZEY 1y 1257 =0
k=0 j=0

Thus,

s

O D DACVED o
j=0

for all i 5)
k=1
where the quantities
s .
= _ 1V =]
D =Y, -1 T]ch

i=0

fork=1,2,---,tare not known.

Now let T'(x) be a formal power series in the indeterminate
x, defined by

T(x)= Tlx_1 + T2x_2 + T3x”3 +oe.

HTy T ©)

Then substituting Eq. (5) into Eq. (6), gives

oo . 00 t . .
- 5 1 - 3 (£ o)
i=1 =1

i=1
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-1
Y Yy e e
=3 D =S'p —— =22 (7
koo -1 ky-x a{x)
k=1 1- X, x k=1 X7 g

where
t
o= [T - X
k=1

is the error locator polynomial and deg p(x) < deg o(x). Since
Ti isknown fori=1,2,--- ,d-1-s,wheret<d- 1, then,
by Theorem 2 in Ref. 8, the error locator o(x) can be obtained
by using continued fractions. The roots of o(x) are the loca-
tions of the ¢ errors.

Since the locations of the ¢ errors and the s erasures are
now known, we may assume that we have the problem of only
s erasures where s’ = ¢ +s. That is, the only unknowns are the
“erasure” amplitudes Wl, Wz, ey Ws:, the amplitudes of
both the error and ‘erasure vectors. The corresponding known
locators are Z. P 22, S ZS:. Only the case of erasures need
be considered. '

Suppose there are s’ <d - 1 erasures. Thent = ¢ + W, where
W= u+e is a new erasure vector in which s’ erasures occur
where the received vector is r and c is the code vector. The
syndromes are

n-1 n—1 n—1
S, = r(@® = E roft = E cafi+ E o
H 1 1
i=0 i=0 i=0

fork=1,2,...,d~1

but
n—-1 )
> cadi=0  fork=1,2,--,,d-1
=0
Thus
n—1
T - ~ k
S, = uia,’
i=0




’

§

wZk=u

Zi k fork=1,2,---,

d-1 (8a)
=1

where W/ are the jth amplitudes of the erasure and error
vectors and Z are the j-th known locatlons of the original
erasure and error vectors. Note that S actually equals S, in
Eq. (la)fork=1,2,--.,d~ 1.In general let

U, = W'Z
j=1

forall & (8b)

where U, = §k fork=1,2,--- d~ 1. The erasure polynomial
of the original erasure and error vector is given by

Tx) = E (x - Z) o(x)7(x) = E (-l)k xSk

j=1

where 7, = 1, s' =¢+s,and 7(x) and o(x) are given in Egs. (2)
and (7), respectively. Hence

¢
)= CVFZTF =0 fori=1,2,--5
k=0
©)
Multiplying Eq. (9) by Wi Z{ ,
A~ O o~y k ~ N ,—-k .
WZSZi+ Y (o wZitkz (10)
k=1
Summing Eq. (10)onifori=1,2,- -, yields

Z wZzsti +E E DFFWZE =0

=0 k-1

Thus
. 2 COTU,, = forj> 1
In general,

Z(_l)kk o~k

fore>d-1 (11)

where U,, U,, ---, U,_, are known. From Eq. (11) one
obtains the rest of the transform of W, i.e., U, for 0< £ <
n- 1. The vector of amplitudes W is found by taking the
inverse transform over GF (¢) of U, for =10, 1, 2, .

n ~ 1. Finally, the original n-tuple code vector can be obtained
by subtracting W from the received vector r.

Let us recapitulate the decoding of R-S codes for both
errors and erasures using the transform over GF (¢™) and
continued fractions. This algorithm is composed of the follow-
ing five steps:

(a) Compute the transform over GF (¢™) of the received

vector n-tuple, (rg, 7y, - -, T,y )s i€0y
n-1
= ik _ = -
S,= Y, red*=U,  k=0,1,--,d-1
i=0

where r,e GF (¢™), o is an element of order n, and d is
the minimum distance of the R-S code.

(b) Compute 7 forj=0,1,2,---, 5 from the erasure

locator polynomial

T(x) = III (x - Zi) = Z; (—l)i’T].xs”
i= j=

where s is the number of erasures in the received
vector. The Zs for 1 < j<s are the known erasure
locations. Then compute the Forney syndrome 7, for
1 <n<d-1-sfrom the equation

for1<i<d-1-s

S
T, = Z O E,

j=0

where 7 for1 <j<sand E;= S]- for1 <j<<d-1are
known.

(c) Use continued fractions to determine the error locator
polynomial o(x) from the known T}’s for 1 <i<d-
1-s.

(d) Compute the erasure and error locator polynomials
from the equation

s+t

Z 1T xst

T(x) = o()r(x) =

where o(x) and 7(x) are the known polynomial. Then
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compute the rest of the transform of the erasure and
error vector from the equation

s+t

Up= 2, CD*F U, for@>d-1
k=1

where U, =S, for 1 <8 <d- 1.

(e) Invert the transform to recover the error and erasure
vector, then obtain the corrected code vector.

To illustrate the decoding procedure for correcting errors
with erasures, a simple example of an R-S code over GF (17) is
now presented.

Example: Let GF (17) be the field of integers, modulo the
Fermat prime F, = 22? + 1 = 17. We consider the correction
of one error and two erasures in an eighttuple R-S code over
GF (17). For this case n=8,d-1=P=4,t=1,5=2,and
d-1=2t+s.

Let ¢ = (5,2,12,15,2,3,2,1)be transmitted. Assume the
erasure vector is u= (0, 0, -3, 0, 0, -2, 0, 0) and the error
vectorise=(0,2,0,0,0,0,0,0). Thenti=u+e=(0,2,-3,
0, 0, -2, 0, 0) is a new erasure vector. Hence the received
vectorisr=c+ute=(5,4,9,15,2,1,2,1).

Now the syndromes S, for r are

7
= = ky - ki
U, =S, =r2)=3 r 2k
i=0

= 202" - 32%)* - 2(2%)°

forl< k<d-1=4

Thatis, Uy =8, =-4,U,=5,=3,U;=8,=10,and U, =
S, = —3. The erasure locator polynomial is given by

2
[‘[ (c-Z)=(x-2%)(x-2%)=(x-4)(x- 32)

i=1

7(x)

x2-2x+9

Thus we obtain 7, = 1, 7, = 2, and 7, = 9. Then the Fomey
syndromes are
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]

s 2
n E (ﬁl)] T]'Sn+s—j= Z(— 1),T]'SnJr2—]'
j=0 j=0

=8 ., 25,198, forl<n<d-1-s=2

n+2 n+1

Hence T, = 2, and T, = 4. The power series for T(x) is

T(x)=Tx ' +Tx2+...+T, | x" @179 4. ..
D(x
=% M +axT 243 s (x)
a(x)

Since d - 1 ~ s = 2t = 2, by Theorem 2 in Ref. 8, o(x) can be
determined by the use of continued fractions. Thus, T(x) =
2/(x - 2). Hence o(x) = x - 2.

The erasure and error locator polynomial is
Fx)= o) r()=(x-2)(x*-2x+9)=x>-4x? + 13x- 1

Thus, 7, = 1, 7, =4, 7, = -4, and T3 = 1. The rest of the
transform for U is given by

= 7 - + ¥
E =7 U LU ,+tT, U

Thus, Ug = -3, Uy =3, U, = -3, and Ug= Uy =-3. The
inverse transform over GF (17) of the U, for 0< k<7 is
given by

7 7
u=8"' Y U HR=(¢2) ) U2
k=2 k=0

fori=0,1,2,---,7

Hence, W = (0, 2,-3,0,0,-2, 0, 0). The corrected code vector
is thus

c=r-% = (54,9,15,2,1,2,1)- (0,2,-3,0,0,-2, 0, 0)

= (5,2,12,15,2,3,2, 1)
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